9 research outputs found

    Symbolic Reachability Analysis of B through ProB and LTSmin

    Get PDF
    We present a symbolic reachability analysis approach for B that can provide a significant speedup over traditional explicit state model checking. The symbolic analysis is implemented by linking ProB to LTSmin, a high-performance language independent model checker. The link is achieved via LTSmin's PINS interface, allowing ProB to benefit from LTSmin's analysis algorithms, while only writing a few hundred lines of glue-code, along with a bridge between ProB and C using ZeroMQ. ProB supports model checking of several formal specification languages such as B, Event-B, Z and TLA. Our experiments are based on a wide variety of B-Method and Event-B models to demonstrate the efficiency of the new link. Among the tested categories are state space generation and deadlock detection; but action detection and invariant checking are also feasible in principle. In many cases we observe speedups of several orders of magnitude. We also compare the results with other approaches for improving model checking, such as partial order reduction or symmetry reduction. We thus provide a new scalable, symbolic analysis algorithm for the B-Method and Event-B, along with a platform to integrate other model checking improvements via LTSmin in the future

    Proceedings of the 11th International Workshop on Automated Verification of Critical Systems

    Get PDF

    The Rodin Platform Has Turned Ten

    No full text

    Scaling up with Event-B: A Case Study

    Get PDF
    Ability to scale up from toy examples to real life problems is a crucial issue for formal methods. Formalizing a algorithm used in vehicle automation (platooning control) in a certification perspective, we had the opportunity to study the scaling up when going from a (toy) model in 1D to a (more realistic) model in 2D. The formalism, Event-B, belongs to the family of mathematical state based methods. Increase was quantitative: 3 times more events and 4 times more proofs; and qualitative: trigonometric functions and integrals are used. Edition and verification of the specification scale up well. The crucial part of the work was the adaptation of the mathematical and physical model through standard heuristics. The validation of temporal properties and behaviors do not scale up so well. Analysis of the difficulties suggests improvements in both tool support and formalism

    Software Architecture of Modern Model Checkers

    Get PDF
    International audienceAutomated formal verification using model checking is a mature field with many tools available. We summarize the recent trends in the design and architecture of model checking tools. An important design goal of modern model checkers is to support many input languages (front-end) and many verification strategies (back-end), and to allow arbitrary combinations of them. This widens the applicability of new verification algorithms, avoids duplicate implementation of the analysis techniques, improves quality of the tools, and eases use of verification for a newly introduced high-level specification, such as a domain specific language
    corecore